Multi-label Problem Transformation Methods: a Case Study

نویسندگان

  • Everton Alvares Cherman
  • Maria Carolina Monard
  • Jean Metz
چکیده

Traditional classification algorithms consider learning problems that contain only one label, i.e., each example is associated with one single nominal target variable characterizing its property. However, the number of practical applications involving data with multiple target variables has increased. To learn from this sort of data, multi-label classification algorithms should be used. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. In this work, two well known methods based on this approach are used, as well as a third method we propose to overcome some deficiencies of one of them, in a case study using textual data related to medical findings, which were structured using the bag-of-words approach. The experimental study using these three methods shows an improvement on the results obtained by our proposed multi-label classification method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Multi-label Feature Selection Methods using the Problem Transformation Approach

Feature selection is an important task in machine learning, which can effectively reduce the dataset dimensionality by removing irrelevant and/or redundant features. Although a large body of research deals with feature selection in single-label data, in which measures have been proposed to filter out irrelevant features, this is not the case for multi-label data. This work proposes multi-label ...

متن کامل

A Pruned Problem Transformation Method for Multi-label Classification

Multi-label classification has gained significant interest in recent years, paralleled by the increasing use of manual multilabelling, often known as applying“tags”to documents. Well known examples include Flickr, YouTube, CiteULike and Google Bookmarks. This paper focuses on Problem Transformation (PT) as an approach to multi-label classification and details these methods as well as their resp...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Multi-Label Classification with Feature-Aware Non-Linear Label Space Transformation

Multi-label classification with many classes has recently drawn a lot of attention. Existing methods address this problem by performing linear label space transformation to reduce the dimension of label space, and then conducting independent regression for each reduced label dimension. These methods however do not capture nonlinear correlations of the multiple labels and may lead to significant...

متن کامل

Two stage architecture for multi-label learning

A common approach to solving multi-label learning problems is to use problem transformation methods and dichotomizing classifiers as in the pair-wise decomposition strategy. One of the problems with this strategy is the need for querying a quadratic number of binary classifiers for making a prediction that can be quite time consuming, especially in learning problems with a large number of label...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CLEI Electron. J.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2011